
A THREE-LEVEL BDDC ALGORITHM FOR SADDLE POINT

PROBLEMS

XUEMIN TU∗

Abstract.

BDDC algorithms have previously been extended to the saddle point problems arising from mixed
formulations of elliptic and incompressible Stokes problems. In these two-level BDDC algorithms, all
iterates are required to be in a benign space, a subspace in which the preconditioned operators are
positive definite. This requirement can lead to large coarse problems, which have to be generated and
factored by a direct solver at the beginning of the computation and they can ultimately become a
bottleneck. An additional level is introduced in this paper to solve the coarse problem approximately
and to remove this difficulty. This three-level BDDC algorithm keeps all iterates in the benign space
and the conjugate gradient methods can therefore be used to accelerate the convergence. This
work is an extension of the three-level BDDC methods for standard finite element discretization of
elliptic problems and the same rate of convergence is obtained for the mixed formulation of the same
problems. Estimate of the condition number for this three-level BDDC methods is provided and
numerical experiments are discussed.

Key words. BDDC, three-level, saddle point problem, domain decomposition, coarse problem,
benign space, condition number

AMS subject classifications. 65N30, 65N55, 65F10

1. Introduction. The BDDC (Balancing Domain Decomposition by Constraints)
methods, which were introduced and analyzed by Dohrmann, Mandel, and Tezaur
[6, 20, 21], were originally designed for standard finite element discretization of ellip-
tic problems. The BDDC algorithms have been extended to saddle point problems
arising from mixed finite element discretization of Stokes by Li and Widlund [17],
to nearly incompressible elasticity by Dohrmann [7], and to flow in porous media
by the author [27, 29]. The coarse problems, in the BDDC algorithms proposed in
[17, 7, 27, 29], are given in terms of a set of primal constraints chosen from each
pair of adjacent subdomains. The matrices of the coarse problems are generated and
factored by using a direct solver at the beginning of the computation. The number
of selected primal constraints in each subdomain must be large enough to make sure
that the iterates stay in the benign space, a special subspace in which the precon-
ditioned operators are positive definite, see [23, 8, 16, 17, 27]. Therefore, the coarse
component of the two-level BDDC preconditioner can become a bottleneck if there
are very many subdomains, e.g., on a large parallel computing system. One way to
remove this difficulty is to use inexact solvers.

Inexact solvers for iterative substructuring algorithms have been discussed in
[1, 10, 9, 24, 2]. Klawonn and Widlund considered inexact solver for the one-level
Finite Element Tearing and Interconnect (FETI) algorithms in [14]. In [32, 31, 30],
the author introduced an additional level into the BDDC algorithms to solve the
coarse problem approximately while maintaining a good convergence rate, see also [28,
Chapter 3] for details. In [19], Li and Widlund considered solving the local problems
in the BDDC algorithms approximately by multigrid methods. Dohrmann also has
developed several versions of approximate BDDC preconditioners in [5]. Klawonn and

∗Department of Mathematics, University of California and Lawrence Berkeley National Lab-
oratory, Berkeley, CA 94720-3840. Email: xuemin@math.berkeley.edu This work was supported

in part by the Director, Office of Science, Computational and Technology Research, U.S.

Deparment of Energy under Contract No. DE-AC02-05CH11231.

1

Rheinbach recently provided and analyzed some inexact Dual-Primal FETI (FETI-
DP) algorithms in [13]. The three-level BDDC algorithms have also been extended
to mortar finite element discretization with geometrically nonconforming partition
by Kim and the author, see [12]. The multi-level BDDC algorithms have also been
studied by Mandel, Sousedik, and Dohrmann [22]. Most of these inexact solvers are
designed for symmetric, positive definite problems.

In this paper, we extend the three-level BDDC methods of [32, 31, 30] to the
saddle point problems arising from mixed formulations of elliptic and incompressible
Stokes problems. For ease of the presentation, we will focus on the formulation and
analysis of the mixed formulation of elliptic problems but we will provide numerical
results for both cases.

It is noteworthy that Hwang and Cai have pointed out in [11] that, the two-
level Schwarz preconditioners with exact coarse solvers for saddle point problems may
not have optimal computing time. In their numerical experiments, the use of inexact
iterative coarse solvers requires less computer time than the exact one. Our three-level
BDDC algorithm provides a way to solve the coarse problem inexactly for two-level
BDDC algorithms. This inexact version of BDDC algorithms requires less memory
and is more efficient for parallel computation. Moreover, we can also apply several
Chebyshev iterations to improve the accuracy of this inexact coarse solver, depending
on the application requirement, see [32, 31].

It has been established, by Mandel, Dohrmann, and Tezaur [21], Li and Widlund
[18], and Brenner and Sung [3], that a pair of the preconditioned FETI-DP and BDDC
operators with the same primal constraints have the same eigenvalues, except possibly
for 0 and 1. However, an additional coarse level for FETI-DP is not straightforward
since the coarse problem is built into the system matrix. The inexact FETI-DP
methods, developed in [13], use block-triangular preconditioners for the saddle point
formulation of the FETI-DP methods. Their condition number estimate is based on
the existence of a good preconditioner with optimal spectral bounds for the original
FETI-DP coarse matrix. We note that an algebraic multigrid preconditioner is used in
[13] and that the coarse problem will no longer be positive definite when this inexact
FETI-DP algorithms are applied to saddle point problems, see [16]. It appears to be
difficult to choose a good preconditioner with optimal spectral bounds for it. Here,
we provide an analysis and a good preconditioner for such coarse problems. This
preconditioner can also be used for the inexact FETI-DP algorithms for saddle point
problems. Moreover, we can prove that our three-level BDDC algorithms will maintain
all iterates in the benign space and that the conjugate gradient method can be used
to accelerate the convergence.

The rest of the paper is organized as follows. We first review some mixed finite
element discretizations and the two-level BDDC methods briefly in Section 2 and
Section 3, respectively. We introduce our three-level BDDC method and the corre-
sponding preconditioner M̃−1 in Section 4. We give some auxiliary results in Section
5. In Section 6, we provide an estimate of the condition number for the system with

the preconditioner M̃−1 which is of the form C
(
1 + log Ĥ

H

)2 (
1 + log H

h

)2
, where Ĥ ,

H , and h are typical diameters of the subregions, subdomains, and elements, respec-
tively; we decompose the whole domain into subregions and each subregion is then
partitioned into subdomains; see Section 4 for the detail. Finally, some computational
results are presented in Section 7.

2

2. An elliptic problem discretized by mixed finite elements. We consider
the following elliptic problem on a bounded polygonal domain Ω in two dimensions
with a Neumann boundary condition:

(2.1)

{
−∇ · (a∇p) = f in Ω,
n · (a∇p) = g in ∂Ω.

Here n is the outward normal to ∂Ω and a is a positive definite matrix function
with entries in L∞(Ω) satisfying ξT a(x)ξ ≥ α‖ξ‖2, for a.e. x ∈ Ω and some positive
constant α. The functions f ∈ L2(Ω) and g ∈ H−1/2(∂Ω) satisfy the compatibility
condition

∫
Ω

fdx +
∫

∂Ω
gds = 0.

The equation (2.1) has a solution p which is unique up to a constant. Without
loss of generality, we assume that g = 0 and that f and the solution p have mean
value zero over Ω. We then have a unique solution.

We assume that we are interested in computing −a∇p directly as is often required
in flow in porous media. We then introduce the velocity u = −a∇p and call p the
pressure. We obtain the following system for the velocity u and the pressure p:

(2.2)

u = −a∇p in Ω,
∇ · u = f in Ω,
n · u = 0 in ∂Ω.

Let ρ(x) = a(x)−1 and define a Hilbert space by

H(div , Ω) = {v ∈ L2(Ω)2;∇ · v ∈ L2(Ω)},

with the norm

‖v‖2
H(div ,Ω) = ‖v‖2

L2(Ω) + H2
D‖∇ · v‖2

L2(Ω),

where HD is the diameter of Ω.
Given a vector u ∈ H(div , Ω), it is possible to define its normal component u · n

on ∂Ω, as an element of H−1/2(∂Ω). Let H0(div , Ω) be the subspace of H(div , Ω)
defined as:

H0(div , Ω) = {v ∈ L2(Ω)2;∇ · v ∈ L2(Ω) and v · n = 0 on ∂Ω}.

The weak form of (2.2) is given as follows: find u ∈ H0(div , Ω) and p ∈ L2
0(Ω) =

{q : q ∈ L2(Ω),
∫
Ω qdx = 0} such that

{
a(u,v) + b(v, p) = 0 ∀v ∈ H0(div , Ω),
b(u, q) = −

∫
Ω

fqdx ∀q ∈ L2
0(Ω),

where a(u,v) =
∫
Ω

uT ρ(x)vdx and b(u, q) = −
∫
Ω
(∇ · u)qdx.

Let Ŵ be the lowest order Raviart-Thomas finite element space with a zero
normal component on ∂Ω, see [4, Chapter III, 3], and let Q be the space of piecewise
constants with a zero mean value. They are finite dimensional subspaces of H0(div , Ω)

and L2
0(Ω), respectively. The pair Ŵ, Q satisfy a uniform inf-sup condition, see [4,

Chapter IV. 1.2]. The finite element discrete problem is: find uh ∈ Ŵ and ph ∈ Q
such that

{
a(uh,vh) + b(vh, ph) = 0 ∀vh ∈ Ŵ,
b(uh, qh) = −

∫
Ω fqhdx ∀qh ∈ Q,

3

and in matrix form:

(2.3)

[
A BT

B 0

] [
uh

ph

]
=

[
0
Fh

]
.

The system matrix of (2.3) is symmetric indefinite with the matrix A symmetric,
positive definite.

3. The two-level BDDC method. We decompose Ω into N nonoverlapping
subdomains Ωi with diameters Hi, i = 1, · · · , N , and with H = maxi Hi. We assume
that each subdomain is a union of shape-regular coarse quadrilaterals and that the
number of such quadrilaterals forming an individual subdomain is uniformly bounded.
We also assume that ρ(x) is a constant in each subdomain. We then introduce quasi-
uniform triangulations of each subdomain. We note that the results of this paper are
also valid for the finite element spaces based on triangles and the algorithm can be
extended to different types of subdomains.

The global problem (2.3) is assembled from the subdomain problems

(3.1)

[
A(i) B(i)T

B(i) 0

][
u

(i)
h

p
(i)
h

]
=

[
0

F
(i)
h

]
.

Let Γ be the interface between the subdomains. The set of the interface nodes Γh

is defined as Γh = (∪i∂Ωi,h) \ ∂Ωh, where ∂Ωi,h is the set of nodes on ∂Ωi and ∂Ωh is

the set of nodes on ∂Ω. We decompose the discrete velocity and pressure spaces Ŵ

and Q into

Ŵ =

(
N∏

i=1

W
(i)
I

)
⊕

ŴΓ and Q =

(
N∏

i=1

Q
(i)
I

)
⊕

Q0.

Here, ŴΓ is the space of traces on Γ of functions of Ŵ. The elements of W
(i)
I are

supported in the subdomain Ωi and their normal components vanish on the subdomain

interface Γi = Γ ∩ ∂Ωi, while the elements of Q
(i)
I are restrictions of elements in Q

to Ωi which satisfy
∫
Ωi

q
(i)
I = 0. Q0 is the subspace of Q with constant values q

(i)
0 in

the subdomain Ωi that satisfy
∑N

i=1 q
(i)
0 m(Ωi) = 0, where m(Ωi) is the measure of

the subdomain Ωi. R
(i)
0 is the operator which maps functions in the space Q0 to its

constant component of the subdomain Ωi.

We denote the subdomain interface velocity variables by W
(i)
Γ and the associate

product space by WΓ =
∏N

i=1 W
(i)
Γ .

In order to define the BDDC algorithm, we also need to introduce a partially

assembled interface velocity space W̃Γ by

W̃Γ = ŴΠ

⊕
W∆ = ŴΠ

⊕
(

N∏

i=1

W
(i)
∆

)
.

Here, ŴΠ is the coarse level, primal interface velocity space which is spanned by
subdomain interface edge basis functions with constant values at the nodes of the
edge. We change the variables so that the degree of freedom of each primal constraint

is explicit, see [18] and [15]. The space W∆ is the direct sum of the W
(i)
∆ , which

is spanned by the remaining interface velocity degrees of freedom, which have a zero

4

average over each edge. In the space W̃Γ, we have relaxed most continuity constraints
on the velocity across the interface but have retained all primal continuity constraints,
which has the important advantage that all the linear systems are nonsingular in the
computation.

We also need to introduce several restriction, injection, and scaling operators
between different spaces.

The restriction operators are:

ŴΓ
R

(i)
Γ−→W

(i)
Γ , ŴΠ

R
(i)
Π−→W

(i)
Π , W∆

R
(i)
∆−→W

(i)
∆ , W̃Γ

RΓ∆−→W∆, and W̃Γ
RΓΠ−→ŴΠ.

We also introduce two injection operators:

ŴΓ

eRΓ−→W̃Γ
RΓ−→WΓ.

The scaled injection operator R̃D,Γ can be written as R̃D,Γ = DR̃Γ, where D is
a diagonal scaling matrix. The diagonal elements of D, corresponding to the primal
variables, are 1, and all others are given by δ†i (x). Here, we define the scale factor

δ†i (x) as follows: for γ ∈ [1/2,∞),

(3.2) δ†i (x) =
ργ

i (x)∑
j∈Nx

ργ
j (x)

, x ∈ ∂Ωi,h ∩ Γh,

where Nx is the set of indices j of the subdomains such that x ∈ ∂Ωj . We then note

that δ†i (x) is constant on an edge since the nodes on an edge are shared by the same
pair of subdomains.

We also use the notations

R =

[
RΓ

I

]
, R̃ =

[
R̃Γ

I

]
and R̃D =

[
R̃D,Γ

I

]
.

The subdomain saddle point problems (3.1) can be written as

(3.3)

A
(i)
II B

(i)T

II A
(i)T

∆I A
(i)T

ΠI 0

B
(i)
II 0 B

(i)
I∆ B

(i)
IΠ 0

A
(i)
∆I B

(i)T

I∆ A
(i)
∆∆ A

(i)T

Π∆ B
(i)T

0∆

A
(i)
ΠI B

(i)T

IΠ A
(i)
Π∆ A

(i)
ΠΠ B

(i)T

0Π

0 0 B
(i)
0∆ B

(i)
0Π 0

u
(i)
h,I

p
(i)
h,I

u
(i)
h,∆

u
(i)
h,Π

p
(i)
h,0

=

0

F
(i)
h,I

0

0

F
(i)
h,0

,

where (u
(i)
h,I , p

(i)
h,I ,u

(i)
h,∆,u

(i)
h,Π, p

(i)
h,0) ∈ (W

(i)
I , Q

(i)
I ,W

(i)
∆ ,W

(i)
Π , Q

(i)
0). We note that, by

the divergence theorem, the lower left block of the matrix of (3.3) is zero since the

bi-linear form b(v
(i)
I , q

(i)
0) always vanishes for any v

(i)
I ∈ W

(i)
I and any constant q

(i)
0

in the subdomain Ωi.
We now reduce the global problem (2.3) to an interface problem. We first intro-

duce the subdomain Schur complements S
(i)
Γ by eliminating the subdomain interior

variables u
(i)
h,I and p

(i)
h,I in (3.3):

(3.4)

S
(i)
Γ =

[
A

(i)
∆∆ A

(i)T

Π∆

A
(i)
Π∆ A

(i)
ΠΠ

]
−

[
A

(i)
∆I B

(i)T

I∆

A
(i)
ΠI B

(i)T

IΠ

][
A

(i)
II B

(i)T

II

B
(i)
II 0

]−1 [
A

(i)T

∆I A
(i)T

ΠI

B
(i)
I∆ B

(i)
IΠ

]
.

5

Given the definition of S
(i)
Γ , the subdomain problems (3.3) are reduced to the

subdomain interface problems

[
S

(i)
Γ B

(i)T

0Γ

B
(i)
0Γ 0

][
u

(i)
h,Γ

p
(i)
h,0

]
= g(i), i = 1, 2, ..., N,

where

u
(i)
h,Γ =

[
u

(i)
h,∆

u
(i)
h,Π

]
, B

(i)
0Γ =

[
B

(i)
0∆ B

(i)
0Π

]
,

and

g(i) =

0
0

F
(i)
h,0

−

A
(i)
∆I B

(i)T

I∆

A
(i)
ΠI B

(i)T

IΠ

0 0

[

A
(i)
II B

(i)T

II

B
(i)
II 0

]−1 [
0

F
(i)
h,I

]
.

Let

SΓ =

S
(1)
Γ

. . .

S
(N)
Γ

 , B0Γ =

B
(1)
0Γ

. . .

B
(N)
0Γ

 , and S =

[
SΓ BT

0Γ

B0Γ 0

]
.

The partially assembled Schur complement S̃ is obtained from S by assembling
the primal variables on the subdomain interface, i.e.

(3.5) S̃ = R
T
SR =

[
R

T

ΓSΓRΓ R
T

ΓBT
0Γ

B0ΓRΓ 0

]
:=

[
S̃Γ B̃T

0Γ

B̃0Γ 0

]
.

S̃ can be further assembled with respect to the variables of the W∆. The fully
assembled Schur complement

(3.6) Ŝ = R̃T S̃R̃ =

[
R̃T

Γ S̃ΓR̃Γ R̃T
Γ B̃T

0Γ

B̃0ΓR̃Γ 0

]
:=

[
ŜΓ B̂T

0Γ

B̂0Γ 0

]
.

and the reduced interface problem can be written as: find (uh,Γ, ph,0) ∈ ŴΓ × Q0,
such that

(3.7) Ŝ

[
uh,Γ

ph,0

]
= g ,

where g =
∑N

i=1

[
R

(i)T

Γ 0

0 R
(i)T

0

]
g(i).

The two-level preconditioned BDDC algorithm is of the form: find (uh,Γ, ph,0) ∈

ŴΓ × Q0, such that

(3.8) M−1Ŝ

[
uh,Γ

ph,0

]
= M−1g.

6

where the preconditioner M−1 = R̃T
DS̃−1R̃D has the following form:

(3.9)

R̃T
D

[
RT

Γ∆

0

]

N∑

i=1

0

R
(i)
∆

0

T

A
(i)
II A

(i)
I∆ B

(i)T

II

A
(i)
∆I A

(i)
∆∆ B

(i)T

I∆

B
(i)
II B

(i)
I∆ 0

−1

0

R
(i)
∆

0

 [RΓ∆ 0] + ΦS−1

Π ΦT

R̃D.

Here Φ is the matrix given by
(3.10)

[
RT

ΓΠ 0
0 I

]
−

[
RT

Γ∆

0

] N∑

i=1

0

R
(i)
∆

0

T

A
(i)
II A

(i)
I∆ B

(i)T

II

A
(i)
∆I A

(i)
∆∆ B

(i)T

I∆

B
(i)
II B

(i)
I∆ 0

−1

A
(i)T

ΠI 0

A
(i)T

Π∆ B
(i)T

0∆

B
(i)
IΠ 0

[

R
(i)
Π 0

0 R
(i)
0

]
.

The coarse level problem matrix SΠ is determined by

SΠ =

N∑

i=1

[
R

(i)T

Π 0

0 R
(i)T

0

]{[
A

(i)
ΠΠ B

(i)T

0Π

B
(i)
0Π 0

]

−

A
(i)T

ΠI 0

A
(i)T

Π∆ B
(i)T

0∆

B
(i)
IΠ 0

T

A
(i)
II A

(i)
I∆ B

(i)T

II

A
(i)
∆I A

(i)
∆∆ B

(i)T

I∆

B
(i)
II B

(i)
I∆ 0

−1

A
(i)T

ΠI 0

A
(i)T

Π∆ B
(i)T

0∆

B
(i)
IΠ 0

[
R

(i)
Π 0

0 R
(i)
0

]
,

(3.11)

which is obtained by assembling subdomain matrices; for additional details, cf. [6,
20, 18, 27].

We define two subspaces ŴΓ,B and W̃Γ,B of ŴΓ and W̃Γ, respectively, as in
[17, Definition 1]:

ŴΓ,B = {wΓ ∈ ŴΓ | B̂0ΓwΓ = 0},

W̃Γ,B = {wΓ ∈ W̃Γ | B̃0ΓwΓ = 0}.(3.12)

We call ŴΓ,B ×Q0 and W̃Γ,B ×Q0 the benign subspaces of ŴΓ ×Q0 and W̃Γ ×Q0,

respectively. It is easy to check that both operators Ŝ and S̃, given in (3.6) and (3.5),

are symmetric, positive definite when restricted to the benign subspaces ŴΓ,B × Q0

and W̃Γ,B × Q0, respectively.
We note that the solution of (3.7) is not in the benign subspace. However, we can

find a special discrete velocity u∗
h,Γ ∈ ŴΓ and define uΓ = uh,Γ − u∗

h,Γ such that the
correction uΓ belongs to the benign subspace.

Let p = ph and

[
u∗

h,Γ

p∗0

]
= M−1

0

F
(1)
h,Γ
...

F
(N)
h,Γ

. We obtain u∗
h from u∗

h,Γ by solving

subdomain saddle point problem with Dirichlet boundary condition in each subdomain
and let u = uh − u∗

h. The correction (u, p)T satisfies

(3.13)

[
A BT

B 0

] [
u

p

]
=

[
−Au∗

h

Fh − Bu∗
h

]
.

7

With this special u∗
h we choose here, the divergence of the correction u is not

zero, but uΓ is in the benign subspace ŴΓ,B, for details, see [28, Section 4.8].
The rest of the algorithm is the same as before except that

g(i) =

−(Au∗
h)

(i)
∆

−(Au∗
h)

(i)
Π

F
(i)
h,0 − (Bu∗

h)0

−

A
(i)
∆I B

(i)T

I∆

A
(i)
ΠI B

(i)T

IΠ

0 0

[

A
(i)
II B

(i)T

II

B
(i)
II 0

]−1 [
−(Au∗

h)
(i)
I

F
(i)
h,I − (Bu∗

h)
(i)
I

]
.

Because of the choice of our primal subspace ŴΠ, we have the following results,
see [27, Lemma 4.1], [17, Lemmas 6.1 and 6.2]:

Lemma 3.1. B
(i)
0∆ = 0, for i=1, · · · , N . For wΓ ∈ W̃Γ, we have B̃0ΓwΓ =

B̃0ΠwΠ, where B̃0Π =
∑N

i=1 R
(i)T

0 B
(i)
0ΠR

(i)
Π and wΠ is the primal part of wΓ.

Lemma 3.2. For any w ∈ W̃Γ,B × Q0, R̃T
Dw ∈ ŴΓ,B × Q0.

Since the correction (uΓ, p)T lies in this benign subspace, we choose the initial
guess in the benign subspace and the preconditioned operator defined in (3.8) will keep
all the iterates in this benign subspace by Lemma 3.2, in which the preconditioned
operator is positive definite and a preconditioned conjugate gradient method can be
applied.

We have the following result for the two-level BDDC algorithm, see [27, Theorem
6.1]:

Theorem 1. The preconditioned operator M−1Ŝ is symmetric, positive definite

with respect to the bi-linear form 〈·, ·〉bS on the benign space ŴΓ,B × Q0 and

(3.14) 〈u,u〉bS ≤
〈
M−1Ŝu,u

〉
bS
≤ C

(
1 + log

H

h

)2

〈u,u〉bS , ∀u ∈ ŴΓ,B × Q0.

Here, C is a constant which is independent of h and H.

4. A three-level BDDC method. For the three-level cases, as in [32, 31, 12],
the coarse problem matrix SΠ defined in (3.11) will not be factored exactly. Instead,
an additional level is introduced and the coarse problem is solved approximately. Call
the new level the subregion level. To distinguish the spaces and operators for the
subregion level from those for the subdomain level, we use the subscript c for the
former.

We decompose Ω into Nc subregions Ωj with diameters Ĥj, j = 1, · · · , Nc. Each
subregion Ωj is the union of Nj subdomains Ωj

i with diameters Hj
i . Let Ĥ = maxj Ĥj

and H = maxi,j Hj
i , for j = 1, · · · , Nc, and i = 1, · · · , Nj. Then N , the total number

of subdomains, is given by N = N1 + · · · + NNc
. We assume that ρ(x) is a constant

in each subregion.
We introduce the subregional Schur complement, which is assembled only from

the subdomains in subregion Ωj ,

S
(j)
Π =

Nj∑

i=1

[
R

(i)T

Π 0

0 R
(i)T

0

]{[
A

(i)
ΠΠ B

(i)T

0Π

B
(i)
0Π 0

]

−

A
(i)T

ΠI 0

A
(i)T

Π∆ B
(i)T

0∆

B
(i)
IΠ 0

T

A
(i)
II A

(i)
I∆ B

(i)T

II

A
(i)
∆I A

(i)
∆∆ B

(i)T

I∆

B
(i)
II B

(i)
I∆ 0

−1

A
(i)T

ΠI 0

A
(i)T

Π∆ B
(i)T

0∆

B
(i)
IΠ 0

[
R

(i)
Π 0

0 R
(i)
0

]
.

(4.1)

8

By Lemma 3.1 and (4.1), we have B
(i)
0∆ = 0 and

S
(j)
Π :=

[
A

(j)
Π B

(j)T

Π

B
(j)
Π 0

]
,

where
(4.2)

A
(j)
Π =

Nj∑

i=1

R
(i)T

Π

A
(i)
ΠΠ −

A
(i)T

ΠI

A
(i)T

Π∆

B
(i)
IΠ

T

A
(i)
II A

(i)
I∆ B

(i)T

II

A
(i)
∆I A

(i)
∆∆ B

(i)T

I∆

B
(i)
II B

(i)
I∆ 0

−1

A
(i)T

ΠI

A
(i)T

Π∆

B
(i)
IΠ

R
(i)
Π ,

(4.3) B
(j)
Π =

Nj∑

i=1

R
(i)T

0 B
(i)
0ΠR

(i)
Π .

We note that the coarse problem matrix SΠ can be assembled from the S
(j)
Π . Therefore,

we can write SΠ as

(4.4) SΠ =

[
AΠ BT

Π

BΠ 0

]
,

where AΠ and BΠ are assembled from A
(j)
Π and B

(j)
Π , respectively.

Recall that B̃0Π =
∑N

i=1 R
(i)T

0 B
(i)
0ΠR

(i)
Π , is defined in Lemma 3.1. By the definition

of BΠ and B̃0Π, we have
Lemma 4.1. BΠ = B̃0Π.
In the two-level case, SΠ is factored by a direct solver at the beginning of the

computation, cf. (3.9). Here, we build M−1
Π to approximate S−1

Π .

Replacing S−1
Π in (3.9) with M−1

Π gives us the three-level preconditioner M̃−1:

R̃T
D

[
RT

Γ∆

0

]

N∑

i=1

0

R
(i)
∆

0

T

A
(i)
II A

(i)
I∆ B

(i)T

II

A
(i)
∆I A

(i)
∆∆ B

(i)T

I∆

B
(i)
II B

(i)
I∆ 0

−1

0

R
(i)
∆

0

 [RΓ∆ 0] + ΦM−1

Π ΦT

R̃D.

To define M−1
Π in detail, we need to introduce several spaces and operators.

Let Γc be the interface between the subregions; note that Γc ⊂ Γ. For each subre-
gion Ωi, we denote the space corresponding to the subdomain edge average variables

in this subregion, by W
(i)
c . Let Wc =

∏Nc

i=1 W
(i)
c and let Ŵc be the subspace of Wc

of elements that are continuous across Γc. W
(i)
c can be decomposed into a subregion

interior part W
(i)
Ic

and a subregion interface part W
(i)
Γc

. We further decompose the

subregion interface part W
(i)
Γc

into a primal subspace W
(i)
Πc

and a dual subspace W
(i)
∆c

.
Here, we will only consider the averages over subregion edges as the primal variables.
Again, we should change the variables for all local coarse matrices corresponding to
these edge average primal variables. We will assume that all matrices are written in
term of the new variables.

We denote the associated subregion interface product space by WΓc
:=
∏Nc

i=1 W
(i)
Γc

.
We note that the elements in WΓc

can be discontinuous across the subregion interface

9

Γc. ŴΓc
and W̃Γc

are two subspaces of WΓc
. The elements of ŴΓc

are continuous

across Γc, whereas only the primal variables are continuous across Γc in W̃Γc
. Thus,

we have ŴΓc
⊂ W̃Γc

⊂ WΓc
. We also need two injection operators R̃Γc

and RΓc
:

ŴΓc

eRΓc−→W̃Γc

RΓc−→WΓc
,

which are similar to R̃Γ and RΓ, respectively.

Similarly, we also denote by Q
(i)
c , the pressure space of piecewise constant on each

subdomain of the subregion Ωi by Q
(i)
c . Let Qc = ΠNc

i=1Q
(i)
c . Qc can be decomposed

into ΠNc

i=1Q
(i)
Ic

and Q0c
, where the elements of Q

(i)
Ic

are restrictions of elements in Qc

to Ωi which satisfy
∫
Ωi q

(i)
Ic

= 0. Q0c
is the subspace of Qc with constant values q

(i)
0c

in the subregion Ωi that satisfy
∑Nc

i=1 q
(i)
0c

m(Ωi) = 0, where m(Ωi) is the measure of

the subregion Ωi. R
(i)
0c

is the operator which maps functions in the space Q0c
to its

constant component of the subregion Ωi.
We also use the notation

Rc =

[
RΓc

I

]
and R̃c =

[
R̃Γc

I

]
.

We denote by F̂c and F̂Γc
the dual spaces of Ŵc and ŴΓc

, respectively. We also
denote by Gc and G0c

the dual spaces of Qc and Q0c
, respectively.

We are now ready to explain how M−1
Π works on a vector in F̂c × Gc. Given

a vector

[
Ψ

Θ

]
∈ F̂c × Gc, let

[
y

z

]
= S−1

Π

[
Ψ

Θ

]
and

[
ŷ

ẑ

]
= M−1

Π

[
Ψ

Θ

]
.

We write Ψ, y, and ŷ in terms of subregion interior and interface parts, i.e., Ψ =(
Ψ

(1)
Ic

, · · · ,Ψ
(Nc)
Ic

,ΨΓc

)T

, y =
(
y

(1)
Ic

, · · · ,y
(Nc)
Ic

,yΓc

)T

, and ŷ =
(
ŷ

(1)
Ic

, · · · , ŷ
(Nc)
Ic

, ŷΓc

)T

.

We also write Θ, z, and ẑ as Θ =
(
Θ

(1)
Ic

, · · · ,Θ
(Nc)
Ic

,Θ0c

)T

, z =
(
z
(1)
Ic

, · · · , z
(Nc)
Ic

, z0c

)T

,

and ẑ =
(
ẑ
(1)
Ic

, · · · , ẑ
(Nc)
Ic

, ẑ0c

)T

.

To obtain

[
y

z

]
, we solve SΠ

[
y

z

]
=

[
Ψ

Θ

]
by a block factorization. Let

R
(i)
Γc

: ŴΓc
→ W

(i)
Γc

be a restriction operator. We write AΠ and BΠ given in (4.4)
using subregion interior and interface blocks:

AΠ =

A
(1)
ΠIcIc

0 0 A
(1)T

ΠΓcIc
R

(1)
Γc

0
. . . 0

...

0 0 A
(Nc)
ΠIcIc

A
(Nc)

T

ΠΓcIc
R

(Nc)
Γc

R
(1)T

Γc
A

(1)
ΠΓcIc

· · · R
(Nc)

T

Γc
A

(Nc)
ΠΓcIc

ÂΠΓcΓc

and

(4.5) BΠ =

B
(1)
ΠIcIc

0 0 B
(1)
ΠIcΓc

R
(1)
Γc

0
. . . 0

...

0 0 B
(Nc)
ΠIcIc

B
(Nc)
ΠIcΓc

R
(Nc)
Γc

0 · · · 0 B̂Π0cΓc

,

10

where ÂΠΓcΓc
=
∑Nc

i=1 R
(i)T

Γc
A

(i)
ΠΓcΓc

R
(i)
Γc

and B̂Π0cΓc
=
∑Nc

i=1 R
(i)T

0c
B

(i)
Π0cΓc

R
(i)
Γc

.

We solve

[
y

(i)
Ic

z
(i)
Ic

]
in terms of

[
yΓc

z0c

]
and have

(4.6)[
y

(i)
Ic

z
(i)
Ic

]
=

[
A

(i)
ΠIcIc

B
(i)T

ΠIcIc

B
(i)
ΠIcIc

0

]−1([
Ψ

(i)
Ic

Θ
(i)
Ic

]
−

[
A

(i)
ΠIcΓc

R
(i)
Γc

0

B
(i)
ΠIcΓc

R
(i)
Γc

0

][
yΓc

z0c

])
.

Let

T
(i)
Γc

= A
(i)
ΠΓcΓc

−
[

A
(i)
ΠΓcIc

B
(i)T

ΠIcΓc

] [A
(i)
ΠIcIc

B
(i)T

ΠIcIc

B
(i)
ΠIcIc

0

]−1 [
A

(i)
ΠIcΓc

B
(i)
ΠIcΓc

]

and let

T (i) =

[
T

(i)
Γc

B
(i)T

Π0cΓc

B
(i)
Π0cΓc

0

]
,

be the subregion Schur complement. We then obtain the subregion interface problem:

(
Nc∑

i=1

[
R

(i)T

Γc
0

0 R
(i)T

0c

]
T (i)

[
R

(i)
Γc

0

0 R
(i)
0c

])[
yΓc

z0c

]

=

[
ΨΓc

Θ0c

]
−

Nc∑

i=1

[
R

(i)T

Γc
0

0 R
(i)T

0c

][
A

(i)
ΠΓcIc

B
(i)T

ΠIcΓc

0 0

][
A

(i)
ΠIcIc

B
(i)T

ΠIcIc

B
(i)
ΠIcIc

0

]−1 [
Ψ

(i)
Ic

Θ
(i)
Ic

]
.

(4.7)

Denote

TΓc
=

T
(1)
Γc

. . .

T
(Nc)
Γc

 , BΠ0c,Γc

=

B
(1)
Π0cΓc

. . .

B
(Nc)
Π0cΓc

 ,

and

T =

[
TΓc

BT
Π0cΓc

BΠ0cΓc
0

]
.

As on the subdomain level case, we introduce a partially assembled Schur com-
plement of SΠ, and denote it by T̃ . T̃ can be written as:

(4.8) T̃ = R
T

c TRc :=

[
T̃Γc

B̃T
Π0cΓc

B̃Π0cΓc
0

]
.

T̃ can be further assembled with respect to the variables of W
(i)
∆c

. T̂ , the fully
assembled subregion Schur complement of SΠ, can be written as:

(4.9) T̂ = R̃T
c T̃ R̃c :=

[
T̂Γc

B̂T
Π0cΓc

B̂Π0cΓc
0

]
.

11

We define

[
hΓc

h0c

]
∈ F̂Γc

× Gc by

(4.10)
[

ΨΓc

Θ0c

]
−

Nc∑

i=1

[
R

(i)T

Γc
0

0 R
(i)T

0c

] [
A

(i)
ΠΓcIc

B
(i)T

ΠIcΓc

0 0

] [
A

(i)
ΠIcIc

B
(i)T

ΠIcIc

B
(i)
ΠIcIc

0

]−1 [
Ψ

(i)
Ic

Θ
(i)
Ic

]
.

The reduced subregion interface problem (4.7) can be written as: find

[
yΓc

z0c

]
∈

ŴΓc

⊕
Q0c

, such that

(4.11) T̂

[
yΓc

z0c

]
= R̃T

c T̃ R̃c

[
yΓc

z0c

]
=

[
hΓc

h0c

]
.

To obtain the approximation

[
ŷ

ẑ

]
= M−1

Π

[
Ψ

Θ

]
, we do not solve (4.11) exactly.

Instead, we compute

[
ŷΓc

ẑ0c

]
as

(4.12)

[
ŷΓc

ẑ0c

]
= R̃T

Dc
T̃−1R̃Dc

[
hΓc

h0c

]
.

Here R̃Dc
is a scaled injection operator which is similar to R̃D; we can write R̃Dc

=[
DcR̃Γc

0
0 I

]
, where Dc is a diagonal scaling matrix. The diagonal elements of Dc,

corresponding to the primal variables, are 1, and all others are given by δ†c,i(x). Here

δ†c,i(x) is similar to δ†i (x), which is defined in (3.2), except that δ†c,i(x) is defined for the
subregion interface instead of subdomain interface nodes. For an x on the subregion
interface, δ†c,i(x) is defined as follows: for γ ∈ [1/2,∞),

δ†c,i(x) =
ργ

i (x)∑
j∈Nx

ργ
j (x)

,

where Nx is the set of indices j of the subregions such that x ∈ ∂Ωj. Recall that in
our theory, we assume the ρ(x) are constant in the subregions.

We will maintain the same relation between

[
ŷ

(i)
Ic

ẑ
(i)
Ic

]
and

[
ŷΓc

ẑ0c

]
as for

[
y

(i)
Ic

z
(i)
Ic

]

and

[
yΓc

z0c

]
in (4.6), i.e.,

(4.13)[
ŷ

(i)
Ic

ẑ
(i)
Ic

]
=

[
A

(i)
ΠIcIc

B
(i)T

ΠIcIc

B
(i)
ΠIcIc

0

]−1([
Ψ

(i)
Ic

Θ
(i)
Ic

]
−

[
A

(i)
ΠIcΓc

R
(i)
Γc

0

B
(i)
ΠIcΓc

R
(i)
Γc

0

] [
ŷΓc

ẑ0c

])
.

We also define the subspaces ŴΓc,Bc
and W̃Γc,Bc

of ŴΓc
and W̃Γc

respectively
as in (3.12):

ŴΓc,Bc
= {wΓc

∈ ŴΓc
| B̂Π0cΓc

wΓ = 0},

W̃Γc,Bc
= {wΓc

∈ W̃Γc
| B̃Π0cΓc

wΓc
= 0}.

12

We note that the operators T̃ and T̂ are positive definite in the space ŴΓc,Bc
× Q0c

and W̃Γc,Bc
× Q0c

, respectively.

Now we prove that our new three-level preconditioner M̃−1 can keep all the

iterates in the benign space ŴΓ,B × Q0.

Lemma 4.2. For any w ∈ ŴΓ,B × Q0, we have M̃−1Ŝw ∈ ŴΓ,B × Q0.

Proof: By Lemmas 3.1, 3.2 and the definition of M̃−1, we only need to prove

ΦM−1
Π ΦT R̃DŜw ∈ W̃Γ,B × Q0.

Denote w =

[
wΓ

p

]
. Since wΓ ∈ ŴΓ,B and B

(i)
0∆ = 0, we have

ΦT R̃DŜw =

[
fΠ
0

]
,

where fΠ ∈ F̂c and recall that Φ is defined in (3.10). Let

[
ŷ

ẑ

]
= M−1

Π

[
fΠ
0

]
. We

obtain

[
ŷ

ẑ

]
by solving (4.12) and (4.13) with Ψ = fΠ and Θ = 0.

By (4.10), we know that h0c
= 0 in (4.12) and that T̃−1R̃Dc

[
hΓc

0

]
∈ W̃Γc,Bc

×

Q0c
. Similarly as the proof of Lemma 3.2, see [27, Lemma 4.1] for the details, we

have R̃T
Dc

T̃−1R̃Dc

[
hΓc

0

]
∈ ŴΓc,Bc

× Q0c
, i.e.,

(4.14) B̂Π0cΓc
ŷΓc

= 0.

Since Θ = 0, by (4.13), we have

(4.15) B
(i)
ΠIcIc

ŷ
(i)
Ic

+ B
(i)
ΠIcΓc

R
(i)
Γc

ŷΓc
= 0.

Therefore, by (4.5), (4.14), (4.15), and Lemma 4.1, we have BΠŷ = 0, i.e., B̃0Πŷ = 0.
Finally, we have

ΦM−1
Π ΦT R̃DŜw =

∗
ŷ

ẑ

where ∗ denote the dual part of the velocity. By Lemma 3.1, we have

B̃0Γ

[
∗
ŷ

]
= B̃0Πŷ = 0

and we conclude that ΦM−1
Π ΦT R̃DŜw ∈ W̃Γ,B × Q0.

2

Remark: In the proof of Lemma 4.2, B
(i)
0∆ = 0 is the key ingredient, which is

obtained by choosing enough primal constraints in each subdomain. Similarly, for the
Stokes problem, such a result is given in [17, Lemma 6.1]; it is based on [17, As-
sumption 1]. Therefore, Lemma 4.2 is valid for Stokes problem with [17, Assumption
1] held. Our numerical experiments for Stokes in Section 7 are also consistent with
this.

As for the two-level BDDC method, we choose the initial guess in the benign
subspace and the three-level BDDC preconditioned operator M̃−1Ŝ will by Lemma
4.2 keep all the iterates in this benign subspace, in which the preconditioned operator
is positive definite and a preconditioned conjugate gradient method can be applied.

13

5. Some auxiliary results. In this section, we will collect a number of results
which are needed in our theory. In order to avoid a proliferation of constants, we
will use the notation A ≈ B. This means that there are two constants c and C,
independent of any parameters, such that cA ≤ B ≤ CA, where C < ∞ and c > 0.

In our theory, we make an assumption for our decomposition of the global domain
Ω.

Assumption 5.1. Each subdomain Ωi is quadrilateral. The subdomains form a
quasi-uniform coarse mesh of Ω with mesh size H.

We list some results for Raviart-Thomas finite element function spaces needed in
our analysis. These results were originally given in [26, 34, 25, 33].

We define an the interpolation operator ΠH
RT from Ŵ onto ŴH , where ŴH is

the Raviart-Thomas finite element space on the coarse mesh with mesh size H . ŴH

is defined in terms of the degrees of freedom λE over the edges E in the coarse mesh,
by

λE(ΠH
RT u) :=

1

|E|

∫

E

u · nds.

We consider the stability of the interpolant ΠH
RT in the next lemma.

Lemma 5.2. There exists a constant C, which depends only on the aspect ratios

of K ∈ TH and of the elements of Th, such that, for all u ∈ Ŵ,

‖div (ΠH
RT u)‖2

L2(K) ≤ ‖div u‖2
L2(K),

‖ΠH
RT u‖2

L2(K) ≤ C

(
1 + log

H

h

)(
‖u‖2

L2(K) + H2
K‖div u‖2

L2(K)

)
.

Proof: See [26, Lemma 3.2].
2

We next introduce three useful extension operators.
We define N(∂Ωi) as the the space of functions that are constant on each element

of the edges of the boundary of Ωi and its subspace N0(∂Ωi), of functions that have
mean value zero on ∂Ωi.

Definition 1. Given the boundary data with zero mean value on ∂Ωi, define a
discrete divergence free extension operator by solving the local saddle point problem

(3.3) with

[
u

(i)
h,∆

u
(i)
h,Π

]
given and zero right hand side. The resulting u

(i)
h has the minimal

L2-norm of all discrete divergence free velocities with the given boundary values, i.e.,
H̃i : N0(∂Ωi) −→ W(i) satisfies

B(i)H̃iµ = 0 and ‖H̃iµ‖L2(Ωi) = min
v∈W(i), B(i)v=0, v|∂Ωi

=µ
‖v‖L2(Ωi),

for any µ ∈ N0(∂Ωi).
Definition 2. Given edge average values over the subdomain edges with a zero

mean value over ∂Ωi, define a discrete divergence free extension operator Ĥi by solving

the local saddle point problem (3.3) with given u
(i)
h,Π and zero right hand side. The

resulting velocity u
(i)
h has minimal L2-norm of all discrete divergence free velocities

with given edge averages, i.e., Ĥi : N0(∂Ωi) −→ W(i) satisfies

B(i)Ĥiµ = 0 and ‖Ĥiµ‖L2(Ωi) = min
v∈W(i), B(i)v=0, vE=µ

‖v‖L2(Ωi),

14

for any µ ∈ N0(∂Ωi),

Definition 3. Given the values w
(i)
Γc

∈ W̃
(i)
Γc,Bc

, define the extension operator

Hi by obtaining w
(i)
Ic

using (4.6) with R
(i)
Γc

yΓc
= w

(i)
Γc

and with w
(i)
Ic

= y
(i)
Ic

, i.e.,

Hi : W̃
(i)
Γc,Bc

−→ W
(i)
c satisfies:

B
(i)
Π HiwΓc

= 0, and ‖HiwΓc
‖

A
(i)
Π

= min
v∈W

(i)
c , BΠv=0, v|

∂Ωi=w
(i)
Γc

‖v‖
A

(i)
Π

.

From the definitions of H̃i, Ĥi, and Hi, we have the following lemma:
Lemma 5.3.

‖µ‖2

S
(i)
Γ

= ‖H̃iµ‖
2
L2(Ωi)

, ‖µ‖2

A
(i)
Π

=

Ni∑

j=1

‖Ĥj(R
(i)
Π µ)‖2

L2(Ωi
j)

, ‖w
(i)
Γc
‖2

T
(i)
Γc

= ‖HiwΓc
‖2

A
(i)
Π

.

In next two lemmas, we establish the relation of the L2-norm of the functions in

ŴH and their Ĥ extensions.
Lemma 5.4. Let D be a square with vertices A = (0, 0), B = (H, 0), C = (H, H),

and D = (0, H), with a quasi-uniform triangulation of mesh size h. Then, there
exists a divergence free Raviart Thomas finite element function v defined on D such
that ‖v‖2

L2(D) ≤ C(1 + log H
h) and ΠH

RT v · nAB ≈ 1
H

(
1 + log H

h

)
, ΠH

RTv · nAD ≈

− 1
H

(
1 + log H

h

)
, ΠH

RT v · nBC = ΠH
RT v · nCD = 0.

Proof: Using [32, Lemma 4.1], we can construct a discrete harmonic piecewise
bilinear finite element function ϕ in D with the following properties:

|ϕ|2H1(D) ≈ 1 + log
H

h
, ‖ϕ‖L∞(D) = ϕ(A) ≈ 1 + log

H

h
, ϕ(B) = ϕ(C) = ϕ(D) = 0.

Let v = (−∂ϕ
∂y , ∂ϕ

∂x). We have div v = 0 and

‖v‖2
L2(D) ≤ |ϕ|2H1(D) ≈ 1 + log

H

h
,

ΠH
RT v · nAB = −

1

H

∫ H

0

∂ϕ

∂x
(x, 0) dx ≈

1

H

(
1 + log

H

h

)
,

and

ΠH
RT v · nDA = −

1

H

∫ H

0

−
∂ϕ

∂y
(0, y) dy ≈ −

1

H

(
1 + log

H

h

)
.

2

Remark: In Lemma 5.4, we have constructed the function v for the square D.
By using similar ideas, we can easily construct a function v, which satisfies the same
properties, for other shape-regular quadrilaterals which can be obtained from the ref-
erence square by a sufficiently benign mapping.

Lemma 5.5. Under Assumption 5.1, let WH
i be the lowest order Raviart-Thomas

finite element function space on a subregion Ωi with a quasi-uniform coarse mesh with
mesh size H. And let Wh

i,j, j = 1, · · · , Ni, be the lowest order Raviart-Thomas finite

element function space on a subdomain Ωi
j with a quasi-uniform fine mesh with mesh

15

size h. Given a discrete divergence free u ∈ WH
i , i.e., u · n with a zero mean value

on ∂Ωi
j, there exist two positive constants C1 and C2, which are independent of Ĥ,

H, and h, such that

C1(1+log
H

h
)

Ni∑

j=1

‖Ĥj(u)‖2
L2(Ωi

j)

 ≤ ‖u‖2

L2(Ωi) ≤ C2(1+log
H

h
)

Ni∑

j=1

‖Ĥj(u)‖2
L2(Ωi

j)

 ,

where Ĥj is defined in Definition 2 for each subdomain Ωi
j, j = 1, · · · , Ni.

Proof: Without loss of generality, we assume that the subdomains are squares.
Denote the edges of the subdomain Ωi

j by aj , bj , cj , and dj , and denote the normal
components of u at these four edges by u ·naj

= u(aj), u ·nbj
= u(bj), u ·ncj

= u(cj),
and u ·ndj

= u(dj), respectively. We have u(aj) = −(u(bj)+u(cj)+u(dj) since u has
zero mean value over ∂Ωi

j. u is a lowest order Raviart-Thomas finite element function

and we have, ‖u‖2
L2(Ωi) =

∑Ni

j=1 ‖u‖
2
L2(Ωi

j)
and

(5.1) ‖u‖2
L2(Ωi

j)
≈ CH2

(
u2(aj) + u2(bj) + u2(cj) + u2(dj))

)
.

According to Lemma 5.4, we can construct divergence free functions φb, φc, and
φd on Ωi

j such that

ΠH
RT φb · nbj

= u(bj)
1

H
(1 + log

H

h
),

ΠH
RT φb · ncj

= −ΠH
RT φb · nbj

, ΠH
RT φb · ndj

= ΠH
RT φb · naj

= 0;

ΠH
RT φc · ncj

= (u(bj) + u(cj))
1

H
(1 + log

H

h
),

ΠH
RT φc · ndj

= −ΠH
RT φc · ncj

, ΠH
RT φc · naj

= ΠH
RT φc(bj) · nbj

= 0;

ΠH
RT φd · ndj

= (u(bj) + u(cj) + u(dj))
1

H
(1 + log

H

h
),

ΠH
RT φd · naj

= −ΠH
RT φd · ndj

, ΠH
RT φd · nbj

= ΠH
RT φd · ncj

= 0;

and with

‖φb‖
2
L2(Ωi

j)
≤ u(bj)

2(1 + log
H

h
),

‖φc‖
2
L2(Ωi

j)
≤ (u(bj) + u(cj))

2(1 + log
H

h
),

‖φd‖
2
L2(Ωi

j) ≤ (u(bj) + u(cj) + u(dj))
2(1 + log

H

h
).(5.2)

16

Let vj = H
1+log H

h

(φb +φc +φd); we then have ΠH
RT vj(mj) = u(mj), m = a, b, c, d, and

‖vj‖
2
L2(Ωi

j)
=

(
H

1 + log H
h

)2

‖φb + φc + φd‖
2
L2(Ωi

j)

≤ 3

(
H

1 + log H
h

)2 ∑

m=b,c,d

‖φm‖2
L2(Ωi

j)

≤ C

(
1

c1/2(1 + log H
h)

)2(
1 + log

H

h

)
H2

∑

m=a,b,c,d

(u(mj))
2

≤
1

C1(1 + log H
h)

‖u‖2
L2(Ωi

j)
.(5.3)

Here, we have used (5.1) and (5.2) for the last two inequalities.
By the definition of Ĥj(u), we have,

‖Ĥj(u)‖2
L2(Ωi

j) ≤ ‖vj‖
2
L2(Ωi

j)
≤

1

C1(1 + log H
h)

‖u‖2
L2(Ωi

j)
.

Summing over all the subdomains of the subregion Ωi, we have,

C1

(
1 + log

H

h

)

Ni∑

j=1

‖Ĥj(u)‖2
L2(Ωi

j)

 ≤

Ni∑

j=1

‖u‖2
L2(Ωi

j) = ‖u‖2
L2(Ωi).

This proves the first inequality.
We prove the second inequality by noting that u = ΠH

RT (Ĥ(u)). Since div Ĥ(u) =
0, we have the second inequality by Lemma 5.2.

2

We next list several results for the two-level BDDC methods. To be fully rigorous,
we assume that each subregion is a union of shape-regular coarse quadrilaterals and
that the number of such quadrilaterals forming an individual subregion is uniformly
bounded. Moreover the fine triangulation of each subdomain is quasi uniform. Under
Assumption 5.1, we can then get uniform constants C1 and C2 in Lemma 5.5, which
hold for all the subregions.

We define subregion interface averaging operator EDc
= R̃cR̃

T
Dc

and EDc,Γc
=

R̃Γc
R̃T

Dc,Γc
, which computes the velocity averages across the subregion interface Γc

and then distributes the averages to the boundary points of the subregions. We note
that the estimate of EDc

is the key to the analysis of our three-level BDDC algorithms.

We have for any vector wc = (wΓc
, q0c

) ∈ W̃Γc
× Q0c

,

(5.4) EDc

[
wΓc

q0c

]
=

[
EDc,Γc

wΓc

q0c

]
,

see [27, (5.3)] for more details.
The interface averaging operator EDc

satisfies the following bound, see [27, Lemma
5.6]:

Lemma 5.6. For the two-level BDDC, we have

|EDc
uc|

2
eSH

≤ C

(
1 + log

Ĥ

H

)2

|uc|
2
eSH

, ∀uc ∈ W̃ΓH ,BH
× Q0H

,

17

where S̃H and W̃ΓH ,BH
×Q0H

, which corresponds to a mesh size H, are analogous to

S̃ and W̃Γ,B × Q0, which corresponds to a mesh size h, respectively.

We next list some results for the subspace W̃Γ,B × Q0 and W̃Γc,Bc
× Q0c

.

Let w ∈ W̃Γ,B × Q0, ‖w‖2
eS

= wT S̃w, and ‖wΓ‖2
eSΓ

= wT
Γ S̃ΓwΓ. Similarly, let

wc ∈ W̃Γc,Bc
× Q0c

, ‖wc‖2
eT

= wT T̃w, and ‖wΓc
‖2

eTΓc

= wT
Γc

T̃Γc
wΓc

. As in [27,

Lemma 5.5], we have the following result:

Lemma 5.7. Given any w ∈ W̃Γ,B × Q0 and wc ∈ W̃Γc,Bc
× Q0c

, we have

‖w‖2
eS

= ‖wΓ‖
2
eSΓ

and ‖wc‖
2
eT

= ‖wΓc
‖2

eTΓc

.

In addition, we have, with T̃ defined in (4.8):

Lemma 5.8.

‖EDc
wc‖

2
eT
≤ C

(
1 + log

Ĥ

H

)2

‖wc‖
2
eT
,

for any wc =

[
wΓc

q0c

]
∈ W̃Γc,Bc

× Q0c
. Here C is a constant independent of Ĥ, H,

h, and ρ.

Proof: The proof is similar to that of [32, Lemma 4.3].

Denote by Hi and H̃i (on the mesh size H), the extensions in each subre-
gion Ωi, and by Ĥi

j the extension in each subdomain Ωi
j, where i = 1, · · · , N , and

j = 1, · · · , Ni. We recall that H, H̃, and Ĥ are defined in Definitions 3, 1, and 2,
respectively.

Let R
(i)

Γc
be a restriction operator from W̃Γc

to W
(i)
Γc

. Using the definitions of H,

Ĥ, H̃, and Lemma 5.3, we have

‖EDc
wc‖

2
eT

= ‖EDc,Γc
wΓc

‖2
eTΓc

=

Nc∑

i=1

‖Hi(R
(i)

Γc
EDc,Γc

wΓc
)‖2

A
(i)
Π

≤
Nc∑

i=1

‖H̃i(R
(i)

Γc
EDc,Γc

wΓc
)‖2

A
(i)
Π

=

Nc∑

i=1

ρi

Ni∑

j=1

‖Ĥi
j

(
H̃i(R

(i)

Γc
EDc,Γc

wΓc
)
)
‖2

L2(Ωi
j)

 .

By Lemmas 5.5, 5.3, and 5.7,

|EDc
wc|

2
eT
≤

Nc∑

i=1

ρi

Ni∑

j=1

‖Ĥi
j

(
H̃i(R

(i)

Γc
EDc,Γc

wΓc
)
)
‖2

L2(Ωi
j)

≤
1

C1(1 + log H
h)

Nc∑

i=1

ρi

(
‖
(
H̃i(R

(i)

Γc
EDc,Γc

wΓc
)
)
‖2

L2(Ωi)

)

=
1

C1(1 + log H
h)

‖EDc
wc‖

2
eSH

.

18

Using Lemmas 5.6, 5.7, and 5.3, we obtain

‖EDc
wc‖

2
eT
≤

1

C1(1 + log H
h)

‖EDc
wc‖

2
eSH

≤
C

C1(1 + log H
h)

(
1 + log

Ĥ

H

)2

‖wc‖
2
eSH

=
C

C1(1 + log H
h)

(
1 + log

Ĥ

H

)2(Nc∑

i=1

ρi‖
(
H̃i(R

(i)

Γc
wΓc

)
)
‖2

L2(Ωi)

)

≤
C

C1(1 + log H
h)

(
1 + log

Ĥ

H

)2(Nc∑

i=1

ρi‖
(
Hi(R

(i)

Γc
wΓc

)
)
‖2

L2(Ωi)

)
.

By Lemmas 5.5, 5.3, and 5.7, we have

‖EDc
wc‖

2
eT
≤

C

C1(1 + log H
h)

(
1 + log

Ĥ

H

)2(Nc∑

i=1

ρi‖
(
Hi(R

(i)

Γc
wΓc

)
)
‖2

L2(Ωi)

)

≤
C

C1(1 + log H
h)

(
1 + log

Ĥ

H

)2

C2

(
1 + log

H

h

)
·

Nc∑

i=1

ρi

Ni∑

j=1

(
‖Ĥi

j

(
Hi(R

(i)
Γc

wΓc
)
)
‖2

L2(Ωi
j)

)

=
CC2

C1

(
1 + log

Ĥ

H

)2(Nc∑

i=1

‖Hi(R
(i)

Γc
wΓc

)‖2

A
(i)
Π

)

=
CC2

C1

(
1 + log

Ĥ

H

)2

‖wΓc
‖2

eTΓc

=
CC2

C1

(
1 + log

Ĥ

H

)2

‖wc‖
2
eT
.

2

Lemma 5.9. Given any u ∈ ŴΓ,B × Q0, let

[
Ψ

Θ

]
= ΦT R̃DŜu. We have,

[
Ψ

Θ

]T

S−1
Π

[
Ψ

Θ

]
≤

[
Ψ

Θ

]T

M−1
Π

[
Ψ

Θ

]
≤ C

(
1 + log

Ĥ

H

)2 [
Ψ

Θ

]T

S−1
Π

[
Ψ

Θ

]

Proof: Since u ∈ ŴΓ,B × Q0, we have Θ ≡ 0 as in Lemma 4.2.

19

Using (4.6), (4.10), and (4.11), we have

[
Ψ

Θ

]T

S−1
Π

[
Ψ

Θ

]
=

Nc∑

i=1

Ψ
(i)T

Ic
y

(i)
Ic

+ ΨT
Γc

yΓc

=

Nc∑

i=1

[
Ψ

(i)
Ic

0

]T
[

A
(i)
ΠIcIc

B
(i)T

ΠIcIc

B
(i)
ΠIcIc

0

]−1([
Ψ

(i)
Ic

0

]
−

[
A

(i)
ΠIcΓc

B
(i)
ΠIcΓc

]
R

(i)
Γc

yΓc

)

+

hΓc

+

Nc∑

i=1

R
(i)T

Γc

[
A

(i)
ΠΓcIc

B
(i)T

ΠIcΓc

] [A
(i)
ΠIcIc

B
(i)T

ΠIcIc

B
(i)
ΠIcIc

0

]−1 [
Ψ

(i)
Ic

0

]

T

yΓc

=

Nc∑

i=1

[
Ψ

(i)T

Ic

0

][
A

(i)
ΠIcIc

B
(i)T

ΠIcIc

B
(i)
ΠIcIc

0

]−1 [
Ψ

(i)
Ic

0

]
+ hT

Γc
yΓc

=

Nc∑

i=1

[
Ψ

(i)T

Ic

0

][
A

(i)
ΠIcIc

B
(i)T

ΠIcIc

B
(i)
ΠIcIc

0

]−1 [
Ψ

(i)
Ic

0

]
+

[
hΓc

0

]T (
R̃T

c T̃ R̃c

)−1
[

hΓc

0

]
.

Using (4.13), (4.10), and (4.12), we also have

[
Ψ

Θ

]T

M−1
Π

[
Ψ

Θ

]
=

Nc∑

i=1

Ψ
(i)T

Ic
ŷ

(i)
Ic

+ ΨT
Γc

ŷΓc

=

Nc∑

i=1

[
Ψ

(i)
Ic

0

]T
[

A
(i)
ΠIcIc

B
(i)T

ΠIcIc

B
(i)
ΠIcIc

0

]−1([
Ψ

(i)
Ic

0

]
−

[
A

(i)
ΠIcΓc

B
(i)
ΠIcΓc

]
R

(i)
Γc

ŷΓc

)

+

hΓc

+

Nc∑

i=1

R
(i)T

Γc

[
A

(i)
ΠΓcIc

B
(i)T

ΠIcΓc

] [A
(i)
ΠIcIc

B
(i)T

ΠIcIc

B
(i)
ΠIcIc

0

]−1 [
Ψ

(i)
Ic

0

]

T

ŷΓc

=

Nc∑

i=1

[
Ψ

(i)T

Ic

0

][
A

(i)
ΠIcIc

B
(i)T

ΠIcIc

B
(i)
ΠIcIc

0

]−1 [
Ψ

(i)
Ic

0

]
+ hT

Γc
ŷΓc

=

Nc∑

i=1

[
Ψ

(i)T

Ic

0

][
A

(i)
ΠIcIc

B
(i)T

ΠIcIc

B
(i)
ΠIcIc

0

]−1 [
Ψ

(i)
Ic

0

]
+

[
hΓc

0

]T

R̃T
Dc

T̃−1R̃Dc

[
hΓc

0

]
.

We only need to compare

[
hΓc

0

]T (
R̃T

c T̃ R̃c

)−1
[

hΓc

0

]
and

[
hΓc

0

]T

R̃T
Dc

T̃−1R̃Dc

[
hΓc

0

]

for any hΓc
∈ F̂Γc

. Let h =

[
hΓc

0

]
and let

(5.5) wc =
(
R̃T

c T̃ R̃c

)−1

h ∈ ŴΓc,Bc
× Q0c

and vc = T̃−1R̃Dc
h ∈ W̃Γc,Bc

× Q0c
.

Following the proofs for [32, Lemma 4.6] and [31, Lemma 4.7], we can prove:

hT
(
R̃T

Dc
T̃−1R̃Dc

)
h ≤ C

(
1 + log

Ĥ

H

)2(
hT
(
R̃T

c T̃ R̃c

)−1

h

)
.

2

20

Table 1

Condition number bounds and iteration counts with the two-level preconditioner M−1 and the

three-level preconditioner fM−1. N is the number of the subdomains used for M−1 and Nc is the

number of the subregions used for fM−1. Ĥ

H
= 4 and H

h
= 4. We keep the same numbers of the

subdomains and the same subdomain local problem size for these two preconditioners. ρ ≡ 1

Exact Inexact
N Cond Iter Nc Cond Iter

16 × 16 2.32 8 4 × 4 3.45 10
32 × 32 2.34 8 8 × 8 4.20 12
48 × 48 2.34 7 12 × 12 4.39 11
64 × 64 2.35 6 16 × 16 4.45 11
80 × 80 Out of Memory - 20 × 20 4.48 11

Table 2

Condition number bounds and iteration counts with the preconditioner fM−1 with a change of
the number of subdomains and the size of subdomain problems with Nc = 4 × 4 subregions. ρ ≡ 1

4 × 4 subregions, H
h fixed 4 × 4 subregions, N̂ fixed

bH
H Cond Iter H

h Cond Iter
4 3.45 10 4 3.45 10
8 4.75 11 8 4.58 12
12 5.66 12 12 5.34 13
16 6.37 13 16 5.93 13
20 6.96 14 20 6.41 14

6. Condition number estimate for the new preconditioner. In order to
estimate the condition number for the system with the new preconditioner M̃−1, we
compare it to the system with the preconditioner M−1.

Lemma 6.1. Given any u ∈ ŴΓ,B × Q0,

(6.1) uT M−1Ŝu ≤ uT M̃−1Ŝu ≤ C

(
1 + log

Ĥ

H

)2

uT M−1Ŝu.

Proof: We obtain our result by calculating uT M−1Ŝu and uT M̃−1u for any u ∈

ŴΓ,B × Q0 and using Lemma 5.9.
2

Theorem 6.2. The condition number for the system with the three-level precon-

ditioner M̃−1is bounded by C(1 + log Ĥ
H)2(1 + log H

h)2.
Proof: Combining the condition number bound, given in (3.14), for the two-level

BDDC method, and Lemma 6.1, we find that the condition number for the three-level

method is bounded by C(1 + log Ĥ
H)2(1 + log H

h)2.
2

7. Numerical experiments. We have applied our three-level BDDC algorithm
to the model problem (2.1), where Ω = [0, 1]2. We decompose the unit square into

N̂ × N̂ subregions with the side-length Ĥ = 1/N̂ and each subregion into Nh × Nh

subdomains with the side-length H = Ĥ/Nh. Equation (2.1) is discretized, in each
subdomain, by the lowest order Raviart-Thomas finite elements and the space of
piecewise constants with a finite element diameter h, for the velocity and pressure,

21

Table 3

Condition number bounds and iteration counts with the two-level preconditioner M−1 and the

three-level preconditioner fM−1. N is the number of the subdomains used for M−1 and Nc is the

number of the subregions used for fM−1. Ĥ

H
= 4 and H

h
= 4. We keep the same numbers of the

subdomains and the same subdomain local problem size for these two preconditioners. ρ is in a
checkerboard pattern.

Exact Inexact
N Cond Iter Nc Cond Iter

16 × 16 2.30 9 4 × 4 2.31 9
32 × 32 2.30 9 8 × 8 2.32 9
48 × 48 2.30 8 12 × 12 2.33 9
64 × 64 2.30 8 16 × 16 2.33 8
80 × 80 Out of Memory - 20 × 20 2.33 8

Table 4

Condition number bounds and iteration counts with the preconditioner fM−1 with a change of
the number of subdomains and the size of subdomain problems with Nc = 4 × 4 subregions. ρ is in
a checkerboard pattern.

4 × 4 subregions, H
h fixed 4 × 4 subregions, N̂ fixed

bH
H Cond Iter H

h Cond Iter
4 2.31 9 4 2.31 9
8 2.36 9 8 3.15 11
12 2.37 9 12 3.70 12
16 2.43 10 16 4.13 13
20 2.45 10 20 4.48 13

Table 5

(Stokes) Condition number bounds and iteration counts with the two-level preconditioner M−1

and the three-level preconditioner fM−1. N is the number of the subdomains used for M−1 and Nc

is the number of the subregions used for fM−1. Ĥ

H
= 4 and H

h
= 4. We keep the same numbers of

the subdomains and the same subdomain local problem size for these two preconditioners.

Exact Inexact
N Cond Iter Nc Cond Iter

16 × 16 2.54 11 4 × 4 4.67 14
32 × 32 2.54 11 8 × 8 5.91 18
48 × 48 2.53 11 12 × 12 6.19 19
64 × 64 2.55 12 16 × 16 6.27 20
80 × 80 Out of Memory - 20 × 20 6.33 21

Table 6

(Stokes) Condition number bounds and iteration counts with the preconditioner fM−1 with a
change of the number of subdomains and the size of subdomain problems with Nc = 4×4 subregions.

4 × 4 subregions, H
h fixed 4 × 4 subregions, N̂ fixed

bH
H Cond Iter H

h Cond Iter
4 4.67 14 4 4.67 14
8 6.01 16 8 6.70 18
12 6.89 18 12 8.11 20
16 7.54 19 16 9.23 22
20 8.06 20 20 10.15 23

22

respectively. The preconditioned conjugate gradient iteration is stopped when the
l2-norm of the residual has been reduced by a factor 10−6.

We have carried out two different sets of experiments to obtain iteration counts
and condition number estimates. All the experimental results are fully consistent with
our theory.

In the first set of experiments, we take the coefficient ρ ≡ 1. Table 1 gives the
iteration counts and condition number estimates for the two-level and the three-level
BDDC algorithms. We use the same numbers of subdomains for both two and three
levels with a change of the number of subregions for the three level case. We find
that the condition numbers are independent of the number of subregions. And when
the number of the subdomains is large, the two-level algorithms is out of memory,
while the three-level algorithm is still fine. Table 2 gives results with a change of the
number of the subdomains in each subregion and a change of the size of the subdomain
problem.

In the second set of experiments, we take the coefficient ρ = 1 in half of the
subregions and ρ = 100 in the neighboring subregions, in a checkerboard pattern.
Everything else is the same as in the first set of experiments. The results are reported
in Table 3 and 4.

Finally, we have applied our three-level BDDC algorithm to incompressible Stokes
equations. We use the same discretization as in [17], where the two-level BDDC
algorithm was applied for Stokes. Table 5 gives the iteration counts and condition
number estimates for the two-level and the three-level BDDC algorithms. We use
the same numbers of the subdomains for both two and three levels with a change of
the number of subregions for the three level case. The similar results are obtained for
Stokes as for the elliptic problems. Table 6 gives results with a change of the number of
the subdomains in each subregion and a change of the size of the subdomain problem.
These numerical results are also consistent with our condition number estimates.

Acknowledgments The author is grateful to Professor Olof Widlund for all the
help and time he has devoted to my work.

REFERENCES

[1] Christoph Börgers. The Neumann–Dirichlet domain decomposition method with inexact solvers
on the subdomains. Numer. Math., 55:123–136, 1989.

[2] James H. Bramble, Joseph E. Pasciak, and Apostol Vassilev. Non-overlapping domain de-
composition preconditioners with inexact solves. In Domain Decomposition Methods in
Sciences and Enginering IX, pages 40–52, 1998.

[3] Susanne C. Brenner and Li-Yeng Sung. BDDC and FETI-DP without matrices or vectors.
Comput. Methods Appl. Mech. Engrg., 196(8):1429–1435, 2007.

[4] Franco Brezzi and Michel Fortin. Mixed and hybrid finite element, volume 15 of Springer Series
in Computational Mathematics. Springer Verlag, Berlin-Heidelberg-New York, 1991.

[5] C. R. Dohrmann. An approximate BDDC preconditioner. Numer. Linear Algebra Appl.,
14(2):149–168, 2007.

[6] Clark R. Dohrmann. A preconditioner for substructuring based on constrained energy mini-
mization. SIAM J. Sci. Comput., 25(1):246–258, 2003.

[7] Clark R. Dohrmann. A substructuring preconditioner for nearly incompressible elasticity prob-
lems. Technical Report SAND2004-5393, Sandia National Laboratories, Albuquerque, New
Mexico, October 2004.

[8] Paulo Goldfeld, Luca F. Pavarino, and Olof B. Widlund. Balancing Neumann-Neumann precon-
ditioners for mixed approximations of heterogeneous problems in linear elasticity. Numer.
Math., 95(2):283–324, 2003.

[9] Gundolf Haase, Ulrich Langer, and Arnd Meyer. The approximate Dirichlet domain decompo-
sition method. I. An algebraic approach. Computing, 47(2):137–151, 1991.

[10] Gundolf Haase, Ulrich Langer, and Arnd Meyer. The approximate Dirichlet domain decom-

23

position method. II. Applications to 2nd-order elliptic BVPs. Computing, 47(2):153–167,
1991.

[11] Feng-Nan Hwang and Xiao-Chuan Cai. Parallel fully coupled Schwarz preconditioners for saddle
point problems. Electron. Trans. Numer. Anal., 22:146–162 (electronic), 2006.

[12] Hyea Hyun Kim and Xuemin Tu. A three-level BDDC algorithm for mortar discretization.
Technical Report LBNL-62791, Lawrence Berkeley National Laboratory, June 2007.

[13] Axel Klawonn and Oliver Rheinbach. Inexact FETI-DP methods. Internat. J. Numer. Methods
Engrg., 69(2):284–307, 2007.

[14] Axel Klawonn and Olof B. Widlund. A domain decomposition method with Lagrange mul-
tipliers and inexact solvers for linear elasticity. SIAM J. Sci. Comput., 22(4):1199–1219,
October 2000.

[15] Axel Klawonn and Olof B. Widlund. Dual-primal FETI methods for linear elasticity. Comm.
Pure Appl. Math., 59(11):1523–1572, 2006.

[16] Jing Li. A dual-Primal FETI method for incompressible Stokes equations. Numer. Math.,
102:257–275, 2005.

[17] Jing Li and Olof B. Widlund. BDDC algorithms for incompressible Stokes equations. SIAM
J. Numer. Anal., 44(6):2432–2455, 2006.

[18] Jing Li and Olof B. Widlund. FETI–DP, BDDC, and block Cholesky methods. Internat. J.
Numer. Methods Engrg., 66:250–271, 2006.

[19] Jing Li and Olof B. Widlund. On the use of inexact subdomain solvers for BDDC algorithms.
Comput. Methods Appl. Mech. Engrg., 196(8):1415–1428, 2007.

[20] Jan Mandel and Clark R. Dohrmann. Convergence of a balancing domain decomposition by
constraints and energy minimization. Numer. Linear Algebra Appl., 10(7):639–659, 2003.

[21] Jan Mandel, Clark R. Dohrmann, and Radek Tezaur. An algebraic theory for primal and dual
substructuring methods by constraints. Appl. Numer. Math., 54(2):167–193, 2005.

[22] Jan Mandel, Bedrich Sousedik, and Clark R. Dohrmann. On multilevel BDDC. Technical
Report CCM Report 237, Center for Computational Mathematics, University of Colorado
at Denver, October 2006. To appear in Computing.

[23] Luca F. Pavarino and Olof B. Widlund. Balancing Neumann-Neumann methods for incom-
pressible Stokes equations. Comm. Pure Appl. Math., 55(3):302–335, March 2002.

[24] Barry F. Smith. A parallel implementation of an iterative substructuring algorithm for problems
in three dimensions. SIAM J. Sci. Comput., 14(2):406–423, March 1993.

[25] Andrea Toselli. Domain decomposition methods for vector field problems. PhD thesis, Courant
Institute of Mathematical Sciences, May 1999. TR-785, Department of Computer Science.

[26] Andrea Toselli, Olof B. Widlund, and Barbara I. Wohlmuth. An iterative substructuring
method for Maxwell’s equations in two dimensions. Math. Comp., 70(235):935–949, 2001.

[27] Xuemin Tu. A BDDC algorithm for a mixed formulation of flows in porous media. Electron.
Trans. Numer. Anal., 20:164–179, 2005.

[28] Xuemin Tu. BDDC Domain Decomposition Algorithms: Methods with Three Levels and
for Flow in Porous Media. PhD thesis, Courant Institute, New York University,
January 2006. TR2005-879, Department of Computer Science, Courant Institute.
http://cs.nyu.edu/csweb/Research/TechReports/TR2005-879/TR2005-879.pdf.

[29] Xuemin Tu. A BDDC algorithm for flow in porous media with a hybrid finite element dis-
cretization. Electron. Trans. Numer. Anal., 26:146–160, 2007.

[30] Xuemin Tu. Three-level BDDC. In Domain decomposition methods in science and engineering
XVI, volume 55 of Lect. Notes Comput. Sci. Eng., pages 437–444. Springer, Berlin, 2007.

[31] Xuemin Tu. Three-level BDDC in three dimensions. SIAM J. Sci. Comput., 29(4):1759–1780,
2007.

[32] Xuemin Tu. Three-level BDDC in two dimensions. Internat. J. Numer. Methods Engrg.,
69:33–59, 2007.

[33] Barbara I. Wohlmuth. Discretization Methods and Iterative Solvers Based on Domain Decom-
position, volume 17 of Lecture Notes in Computational Science and Engineering. Springer
Verlag, 2001.

[34] Barbara I. Wohlmuth, Andrea Toselli, and Olof B. Widlund. Iterative substructuring method
for Raviart-Thomas vector fields in three dimensions. SIAM J. Numer. Anal., 37(5):1657–
1676, 2000.

24

